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Abstract

Polynomial interpolation of two variables based on points that are located on multiple
circles is studied. First, the poisedness of a Birkhoff interpolation on points that are located on
several concentric circles is established. Second, using a factorization method, the poisedness
of a Hermite interpolation based on points located on various circles, not necessarily
concentric, is established. Even in the case of Lagrange interpolation, this gives many new sets
of poised interpolation points.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

We study polynomial interpolation of two variables for points located on several
circles (not necessarily concentric). This is a continuation of our recent study in [2].
For the background of this study we refer to the introduction section of [2], below we
recall the basic definition and the result there.

Let H,% denote the space of polynomials P of two variables of total degree n,

n k
P(x,y) = Z Z Xy

k=0 j=0
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It is known that dim IT2 = (n + 1)(n + 2) /2. In this paper, we only consider the case

that the number of interpolation conditions matches the dimension of IT2. If there is

a unique solution to an interpolation problem, we say that the problem is poised.
Throughout this paper, let 9/0r denote the normal derivative

oP 0P oP . .

Fr 50059 +a—ysm 0, (x,y)=(rcos@,rsin0).
For a positive number »> 0, denote the circle of radius r centered at the origin by
S(r) = {(x,»): x> +y* =r}. Let [1] denote the integer part of . In [2] we studied the
following Hermite interpolation problem

Problem 1. Let n be a positive integer. Let 0<ri <ry<---<r; <l andlet pu, 1y, ..., 1,
be non-negative integers such that
n

i+t =[]+ 1

Denote by {(x1;,y1;): 0<j<2m} distinct points on the circle S(r;), where m =
[(n+1)/2] and 1 <I<A. Characterize the points for which the interpolation problem

P . .
(W)(xl.jayu):fj,l,k, 0<k<p —1, 1<I<Z, 0<j<2m (1.1)

has a unique solution in IT> for any given data {f;,}.

A natural choice of points on the circle is the equidistant points. For a real number
o, define

Oum ={07:07 = (2j +o)n/(2m + 1), j=0,1,...,2m} (1.2)

which is the set of 2m + 1 equally spaced points on the unit circle. The main result in
[2] shows that the interpolation problem is poised for these points.

Theorem 1.1. The interpolation problem (1.1) based on the equidistant points
(x1,y17) = (rcos 0;,r;sin0;),  0;€ O,

on the circles S(ry), 1 <I<J, is poised.

The proof exploits the structure of polynomials in two variables and reduces the
problem to a Hermite—Birkhoff interpolation in one variable. There is also examples
in [2] showing that the interpolation problem is not poised for arbitrary points on the
circle.

We will extend the above result in two directions. The first extension comes from a
strengthening of the method in [2], which allows us to include gaps in the directional
derivatives in Problem 1, the so-called Birkhoff interpolation, instead of the
consecutive derivatives. The Birkhoff interpolation problem is usually described
using the notion of incidence matrices, which are matrices whose entries are 0 and 1.
Let X ={r,...,r;} be a set of distinct real numbers. We assume that
ri<ry<---<r;. Let E = (e;;) be an incidence matrix with A rows and n columns.
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Let |E| denote the number of 1’sin E; |[E| = >, >, e;x. Together E and X define a
Birkhoff interpolation problem in one variable

PY(r) = fik, e =1. (1.3)

The Birkhoff interpolation problem is said to be poised if there is a unique
polynomial of degree at most |E|— 1 that satisfies the above interpolation
conditions. With the notion of the incidence matrix, we consider the following
generalization of Problem 1.

Problem 2. Let n be a positive integer. Let 0<ri<ry<---<r; and let E be an
incidence  matrix of A rows with |E|=([+ 1)+ 1). Denote by
{(x15,y15): 0<j<2m} distinct points on the circle S(r;), where m = [(n+1)/2] and
1<I<A. Find proper points and the incidence matrix E for which the interpolation
problem

oFP .
P (X1js017) =fiiks e =1, 0<j<2m (1.4)

has a unique solution in IT> for any given data {f;}.

We will show that for equidistant points on the circles and E being a matrix with
no odd sequence supported from the right (see the definition in Section 2), the above
problem has a unique solution.

The second extension of the result in [2] is in the direction of factorization in the
sense of Bezout’s theorem. In the case of interpolation on one circle (that is, 1 = 1),
an independent proof of Theorem 1.1 is given later by Hakopian and Ismail [4]. They
proved the following factorization theorem which not only yields the case A =1 of
Theorem 1.1 but also leads to some other interesting extensions.

Theorem 1.2. Let s,m be positive integers and m<s<2m. If PeH? satisfies

okp )
W (cosHj,sm@j) =0, 0<k<s—m, 0]‘6@0’,",

then there is a polynomial QeIl3, . , such that
P(x,y) = (> +5* = 1)""7"0(x, p).

In particular, Q =0 if s =2m or s =2m — 1 and Q is a constant if s = 2m — 2.

For the Lagrange interpolation (no derivatives), this is the well-known Bezout’s
theorem, which holds for arbitrary points on the circle (see Theorem 3.7). The fact
that the interpolation points are equidistant on the circle play essential roles for the
Hermite data. One naturally asks if the factorization theorem holds for the more
general setting of several circles. The proof in [4] does not seem to apply to the
interpolation problem with more than one circles. It turns out, however, that the
method in [2] can be used to prove a factorization theorem for the general setting.
The result is the following theorem:
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Theorem 1.3. Let n, s be positive integers,n = 2m orn = 2m — 1, and [n/2] <s<n. Let
ri,ra, ..., 1, be distinct positive real numbers, and let 11,7,, ...,7; be positive integers
such that

T+ + -+, =5—m+ 1
Denote by {(x1j,y1;): 0<j<2m} the equidistant points on the circle S(ry),

(x1j, 1) = (ricos 0;,r;sin0;), 0;€0O,,,, (L.5)
1<I< ), for a fixed a€|0,2). Assume that Pell? satisfies

P
(W) (x1,y15) =0, 0<k<t—1, 1<I<A, 0<j<2m.
Then there is a polynomial QelIl5, ., such that

P(x,y) =[] & +»* = r)"Q(x,y).

=1

In particular, Q =0 if s = n.

This theorem can be used to prove a number of results on the poisedness of
polynomial interpolation. One important feature is that the factorization process can
be used repeatedly to obtain a total factorization of a polynomial. This gives, for
example, the poisedness of the Hermite interpolation on equidistant points on
several groups of circles, in which the number of points on the same group of circles
is the same but different from those in different groups; moreover, the circles from
different groups no longer have to be concentric. Even in the case of the Lagrange
interpolation, many new sets of poised interpolation points can be obtained this way
(see Theorem 3.4 and Example 3.6). For the Lagrange interpolation on one circle,
the factorization theorem holds for arbitrary points on the circle by the classical
Bezout theorem (see Theorem 3.7). For several circles, however, the factorization is
not a simple consequence of Bezout’s theorem, the result depends on the fact that the
interpolation points are equidistant on the circles.

The paper is organized as follows. The result on the Birkhoff interpolation is
proved in Section 2. The factorization theorem and its consequences are presented in
Section 3.

2. Birkhoff interpolation

For the Birkhoff interpolation (1.3) we recall the following notion. A sequence in
an incidence matrix is a sequence of consecutive 1’s in a row of E, say e;x = 1 for
k=i+1,...,i+j, ;=0 and e;;1;11 = 0; it is an odd sequence if j is odd. A
supported sequence is a sequence such that there are non-zero elements of E in both
its upper and lower left sides, that is, there are ¢; ;, = 1 and e;,;, = 1 with i} </, i, >,
j1<iand j, <i; a sequence is supported from the right if there are non-zero elements of
E below and to the left of the beginning of the sequence (it may be more proper to
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say supported from upper side, but we have in mind interpolation points on the real
line). An incidence matrix E of A x n is said to satisfy the Polya condition if

i
Z ep=j+1, j=0,1,...n
k=1 =1
By the Atkinson—Sharma theorem [1], a Birkhoff interpolation is poised if E has no
odd supported sequence and E satisfies the Polya condition. Our main result in this
section is the following.

Theorem 2.1. Let E be an incidence matrix that satisfies the conditions in Problem 2
and has no odd sequence supported from the right. Assume that E satisfies the Polya
condition. Then the interpolation problem (1.4) based on the equidistant points

(x;};,y/:,-) = (l’[ COS 91:/, ry sin 91,/), 9],,'6 @O,m

on the circles S(r), 1<I<), is poised.

For example, there is a unique polynomial of degree 2 that satisfies the

interpolation condition
2jn . 2jm d’P it . 2jm :
Plcos—,sin— | =fo;, —=|cos—sin—|=/f1;, j=0,1,2
( 3 ) 3 ) .fb,}v drz 3 ) 3 .fl,/7 ] ]

for any given data {fy;,f1,}. Here E contains only one row, it has one odd sequence
(of 1 element) which is clearly not supported from the right.

If the interpolation condition is given on consecutive directional derivatives (that

is, the Hermite interpolation), then E clearly satisfies the Polya condition. In that
case, Theorem 2.1 reduces to Theorem 1.1.

Remark 2.1. In [2], Theorem 1.1 was stated with 0 e @, ,,; that is, equidistant points
on different circles can differ by an angle. A careful examination of the proof shows,
however, that this is not the case. We thank Hakop Hakopian for pointing this out
to us.

For the proof we first recall some elementary lemmas in [2]. For our purpose, it is
often more convenient to use the polar coordinates

x=rcos and y=rsinf, r=0, 0<0<2n.

For a polynomial Pell?, we shall write P(r,0) = P(rcos0,rsin 0). The following
lemma gives the expression of a polynomial in polar coordinates [2].

Lemma 2.2. For n=0, in polar coordinates, every polynomial P, e Il 5 can be written as
n
P(r,0) = 4o(r*) + Z [/ 4;(r*) cos jO + ¥ B;(r*) sin j0],
J=1

where A;(t) and B;(t) are polynomials of degree [(n — j)/2].
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More importantly, on the equidistant points of the circle of radius r, the
expression can be simplified [2]. Let ©,,, be defined as in (1.2).

Lemma 2.3. For 0€0,,, and PneHﬁ withn =2m or n =2m— 1,
m
Po(r,0) = Ao(r?) + > (7 A4;(r) + ™7 Ay (7)) cos jO
=1

+ (VB;(r?) — r* T By i1 (7)) sin O]

and we assume that Ay, = By, =0 if n=2m — 1.

In order to show that the Birkhoff interpolation problem (1.4) is poised at the
equidistant points {(x;;,»;;)}, we need to show that if Pell? and
d*p
drk (
then P is a zero polynomial. Using the expression in Lemma 2.3 for P, the
interpolation conditions imply the following.

7/76) = 07 €l = 17 66@0,1117 (21)

Lemma 2.4. Let P, be as in Lemma 2.3, n = 2m or n = 2m — 1. Ifﬁn satisfies (2.1),
then for 0<j<m,

d* y

d}"k [}" A; ( ) 2m ‘/+1A2mfj+l(72)]r:r/ = 07 el = 17
dk 2m—j+1 2

e [},,]B (r ) =it Boji1 (r )]r:r/ =0, eyp=1,

where we assume A; = B; =0 for j>n and By = 0.

Proof. Let n = 2m. The expression of P in Lemma 2.3 shows that (2.1) can be
written as

dk n d ) ' .
W A()(rz) 4 Z I:W("]Aj(rz) + rzm_']+1A2m7j+l (r2))|r:r[ COS]H
r=r =1
L A .
d k(r/B ( ) V2”171+132m*j+1 (rz))|r:r, Sll’lj@ =0

for 0€0,,, and ¢, = 1. As a trigonometric polynomial of degree m that takes the
value zero at 2m + 1 distinct points in [0,27), the uniqueness of the trigonometric
interpolation [7, vol. 2, p. 1] shows that the coefficients of cosjf and sin j are zero,
which gives the stated equations. The case n = 2m — 1 is similar. [

To prove Theorem 2.1 it is sufficient to show that the two systems in the above
lemma implies that 4; =0 and B; =0 for 0<j<m. It turns out that this can be
derived from a special Blrkhoff 1nterpolat10n problem of one variable. We first prove
the following result.
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Lemma 2.5. Let my, ...,my be distinct non-negative integer numbers and let E be an
incidence matrix with A rows and |E| = N. Assume that E has no odd sequences supported
from the right, and E satisfies the Polya condition. If P€ span {t™ ..., "V} and

P<k>(r1) = 0, el = l

for O0<ri<---<r,, then P = 0.

Proof. Let P satisfy the conditions of the lemma. Let M = max{m, ...,my}. Then
P has exact degree M and P has M + 1 — N zero coefficients. It follows that

PR0)=0, ke{0,1,...,M}N{my, ..., my}.

Let Ey = {eg} be the incidence matrix of one row that describe the above Birkhoff
interpolation, that is, E is a row vector such that ey =1 if
ke{0,1, ..., M}\{my,...,my} and ey, = 0 otherwise. Let EguU E be the incidence
matrix that has Ey as the first row, followed by the rows of E in its original order.
Clearly |EgyUE|= M + 1. The incidence matrix EyuUE describes a Birkhoff
interpolation problem on A + 1 points, 0,7y, ...,r;, and P satisfies the condition that

P<k)(r1) = 0, 6171( = 1, e;jkeEouE, PEH}V[.

By the assumption on E, this new incidence matrix has no odd supported sequence
and it clearly satisfies the Polya condition. Consequently, it is poised and we
conclude that P=0. [

For the proof of our theorem, we need the following corollary of the above lemma.

Lemma 2.6. Let E be an incidence matrix that has no odd sequence supported from the

right. Assume that E satisfies the Polya condition and |E| = s+ 1. Let p(t) be a

polynomial of degree s — j, q(t) be a polynomial of degree j — 1 and q(t) = 0ifj = 0. If
k

dk A
s [p(r?) + "+ ()]

then p =0 and g = 0.

=0, eyp=1,

r=r;

Proof. We assume that the polynomials p and ¢ take the following form:

d s—m—d—1
p(t) = Z ait and q(t) = Z bit'.
i=0 i=0

Set
o(r) = p(r*) + "7t q(r).

Then a; is the coefficient of r?* and b; is the coefficient of r2"7+1+2 of the
polynomial ¢. Since 2i +; and 2m —j + 1 4+ 2i are integers of different parity, it
follows that the number of non-zero coefficients in the polynomial ¢ is equal to s. So
that we can apply Lemma 2.5 with N = s — 1 to conclude that ¢ = 0, which implies
thatp=0and ¢=0. O
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Proof of Theorem 2.1. If n = 2m, then 4; in Lemma 2.4 is of degree m — [(/ + 1)/2]
and Ay, is of degree [(/ — 1)/2]. Hence, Lemma 2.6 can be used with / = 2j or
[ =2j—1 and s = m to prove that the equations in Lemma 2.4 imply 4; = 0 and
Aypjy1 =0 for 0<j<m, and similarly B; =0 and By,_j;1—0 for 0<j<m.
Consequently, we conclude that P =0 and the theorem is proved. The case n =
2m — 1 is proved similarly. [

3. Factorization theorem and interpolation

In this section, we prove the factorization in Theorem 1.3 and use it to derive a
number of results for the polynomial interpolation. The proof of the factorization is
based on the following lemma, another corollary of Lemma 2.5, which we stated here
more as a way of fixing the notation.

Lemma 3.1. Let s,d,j, m be non-negative integers such that j<2m+ 1, s=zm+1+d.

Let 11, ...,1; be positive integers satisfying t1+ --- +1, =s—m—+ 1. Let p(t) be a

polynomial of degree d, q(t) be a polynomial of degree s —m — d — 1. If p and q satisfy
dk j m—j

g [p(r?) + 1 f“q(rz)}r:” =0, 0<k<ty -1, I<I<A,

then p =0 and g = 0.

Proof. We define the polynomial ¢ as in Lemma 2.6. Then ¢ is of degree M =
max{j +2d,2s —2d —j — 1}, and the number of non-zero coefficients in the
polynomial ¢ is equal to s —m + 1. The interpolation conditions are described by
the 1 x M incidence matrix E = (e;x) defined by

e =1, 1<I<, 0<k<t —1.

Then |E|=s—m+1 and E clearly satisfies the Polya condition and has no
supported sequences. We can apply Lemma 2.5 with N = s — m + 1 to conclude that
¢ = 0, which implies that p=0and ¢=0. O

The lemma can be proved directly, without relying on Lemma 2.5 since in this case
the matrix E is Hermitian. The condition |E| = s — m + 1 means that ¢(r) has s —
m + 1 non-zero coefficients and then, by Descartes’ rule of signs, ¢ has less than
s —m+ 1 positive zeros (counting multiplicities) or is identically zero.

We are ready to prove the factorization theorem:

Proof of Theorem 1.3. Up to a rotation, we can assume that o = 0 in the proof. By
Lemma 2.2, we can take P in the form

P(r,0) = Ao(r*) + Y _ [V 4;(r) cos j0 + ' B;(+?) sin 0,
=1
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where A4;(¢) and B;(¢) are polynomials of degree [(s —)/2]. By Lemma 2.3, we have
that for 0e€ O,

P.(r,0) +Z %) cos j0 + ' B;(r?) sin jO)]
J=1
m . .
+ Z [,,2mﬁ+1A2m_j+l (VZ) COSj@ . r2mfj+l
Jj=2m+1-s

X Bom-j1 (”2) sin j0].
Using Lemma 2.4, the interpolation conditions implies the following two cases.
Case 1: 0<j<2m — s.
k dk
d}’k [V A ( )] =0, d}’k [

Since the derivatives are taking consecutively, this shows that AJ(.k>(r,2) =0 and

PBi(r*),_, =0, 0<k<t —1, I<I<A

r=r; r=r;

B}M(rlz) =0 for 0<k<7t — 1 and 1</< .. Consequently, we conclude that

47 =T (7 - A a)

1=1 =1

(” —r, )" B (1),

]

::]M

where 47 and B} are polynomials of degree [(s —j)/2] — (s —m + 1) and we define
Ar = B*f01f[( /2] —(s—m+1)<0.
Case 2: 2m — s+ 1<j<m.

d* .

A7)+ i ()], = 0, 0<k<n — 1, 1<U<,

d* ;

0k [r’B( ) rz'”_-/HBz,n,jH(rz)]r:rl =0, 0<k<ty -1, 1<I<.
Using the lemmas with d = [(s — j)/2|, we conclude that 4; = B; = 0 and As,_j;1 =
Byy—j+1 = 0.

Together, the two cases show that
A 2m—s
P(r,0) = H (P — )" | A () + Z (# AF(r*) cos jO + ¥/ BY(r*) sin j0) |,

=1 =1

which completes the proof. [

Let X = {x, ..., x;} be a subset of R%. Let Ly be a linear map, Ly : [T>+— R", that
describes an Hermite interpolation problem Ly P = Lyf for a given function f. For
example, for the Lagrange interpolation, LyP = {P(x,), ..., P(xy)}. Each compo-
nent of Ly P is either P or one of its consecutive directional derivative (or a sum of
consecutive derivatives of P) evaluated at some point in X, where by consecutive
derivatives we mean that at least one directional derivative is included for each
consecutive degree involved (Hermite interpolation). We say that (X, Ly) is regular
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for the Hermite interpolation in IT2, if N = dim IT? and there is a unique polynomial
PeHﬁ such that Ly P = Lyf for any given function f.
An immediate consequence of the previous theorem is the following result:

Theorem 3.2. Let m, s be positive integers and m<s<2m. Let ri,ry, ..., r; be distinct
positive real numbers, and t1,71,, ..., T, be positive integers such that

T+t =s—m+1.

Denote by {(x1;,y17): 0<j<2m} the equidistant points on the circle S(r;), 1<I<A, as
in (1.5). Let X cR*\, Uf:] S(r1), and (X, Ly) be regular for a Hermite interpolation
in 15, . Then for any given function f, there is a unique interpolation polynomial
Pell? such that LyP = Lyf and

2m—s

oFP Okt
(W) (le7y1J) = (8—;”{) (x;‘,-,y,_j)7

0<k<t —1, I<I<A, 0<j<2m.

Proof. Again we only need to prove that f(x) =0 implies P(x) =0. By the
factorization theorem P(r,0) = Hf:l(r2 — r%)”Q(r, 0), where Q is a polynomial in
I3, . . Since Ly assigns the Hermite interpolation conditions, which means
consecutive derivatives, it follows that Q satisfies LyQ = 0. Hence, since (X, Ly) is

regular for the Hermite interpolation in IT5, _ ,, it follows that Q =0, hence
P=0. 0O

In other words, the theorem states that we can combine two interpolation
processes to make up a new interpolation process. For example, we can take X and
Ly to be the same type of Hermite interpolation as in our Theorem 1.1, which leads
to a Hermite interpolation on two groups of circles, on one group of circles we
interpolate at 2m + 1 points, on the other we interpolate at 2m — 2[(s + 1)/2] + 1
points. In particular, we can take (X, Ly) as the Lagrange interpolation.

Even more important, however, is the fact that we can iterate several times of the
above theorem to get an interpolation scheme that consists of several groups of
circles, such that the number of interpolation points on different groups of circles are
all different; furthermore, the circles from different group need not to be concentric.
Denote by

S@a,r) ={(x1,%): (x—a1)’ + (x — @)’ = 7},
a=(a,a)eR? r=0,

the circle of radius r with center at a. Then we can consider interpolation based on
points that are equally spaced on the circles S(ay,r;x) and the number of points on
the circles S(ag, 71 k), S(ak, r2x), ... are the same but different from the number of
points on S(ax, 7 k), S(ax,r24), ... for k#k'. Perhaps the most interesting case is
the Lagrange interpolation, that is, no derivatives involved, which we state below.
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Theorem 3.3. Let s,0,1, 42, ..., s be positive integers such that s> >ly> >4
and define

Sk:S_Z;Ll — - —2/11(,1 —)uk+1.

For 1<k<o, let a; = (al,k,a27k)e[R2 and ryy be distinct non-negative real numbers,
1<I< . For oy, ...,0,€[0,2), let

(Xj"],k,yj’[’k) = (al,k + 1k COS Oj, ark + Vi sin 0j), Oj € @Ot/msk’ (31)

where 0<j<2sy, denote the equidistant points on the circle S(ay,r i) and assume that
all points are distinct. If P eH? satisfies

P(xj,l,kayj,l,k) :07 0<j<2Sk7 1<l<lk7 1<k<0',

then there is a polynomial Qell;_,, . _,, such that

g

i
Pix,y) =[] T] (c= @)’ + (v = a2x)* = 1) (. ).
k=1 1=1
In particular, if s<2ly 4+ -+ + 244, then Q = 0.

Proof. Applying an affine transformation, it is easy to see that the previous theorem
holds if the circles S(r;) are replaced by S(a,r;) for any fixed aeR. Since
P(x;11,y5:1) =0, we can apply Theorem 1.3 with m =s— 1, + 1 and the circles

center at a; to conclude that there is a polynomial Q; eH?_%l such that

A
2 2
Px,y) = [J((x = a11)* + (v — a21)> = 17,) Qi (x, ).
=1
Since 7 are distinct and all points (x;;x, y;x) are distinct, we have Q1 (x;;2,¥;12) =
0. Hence the previous theorem with m = s — 24; — 1; — 1 and the circles center at a,
implies that there is a polynomial Q,eIl? such that

S72/1172/12
A1
P(x,y) = [[((x —an)* + (0 — a21)* = 7))

=1
) [0 = @120 + (0 — a2)? = 122) Os(x, 7).
=1

Continuing this process for k = 3,4, ..., ¢ completes the proof. [

Remark 3.1. The equidistant points for circles in the same group have the same
angles; that is, o in O, is a constant for the circles S(ax,r1x), ..., S(Ak, 77, %)
However, the equidistant points for circles in different groups can differ by a
constant; that is, o may not be equal to o; for k#1.

We remark that r;; are distinct non-negative numbers, so that at most one rx
can be zero. If r = 0, the corresponding circle S(a,r) is just the center a. Also, the
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centers a; of the circles are not necessarily distinct. One interesting case is when all
a; = 0, that is, all circles are concentric at the origin.

An immediate consequence of the above theorem is the following result on the
Lagrange interpolation.

Theorem 3.4. Let n,0,, 42, ..., A, be positive integers, such that n>J; and
M4+ i =[n/2)+ 1. (3.2)

Let ay = (ayk,arx) and let riy be distinct non-negative real numbers, 1<I<Jl,
1<k<o. Define

m=n—MW+1, and n=n—-22 — - —2h_1— A+ 1, k=2.

Let (xj1k,¥j1k), 0<j<2ny, denote the equidistant points on the circle S(ay,rix) as in
(3.1) and assume that all points are distinct. Then for any given data {f; i}, there is a
unique polynomial Perl that satisfies

P(Xj1h,Vak) = firk, O0<j<2m, 1<I<A, 1<k<o.

The Lagrange interpolation described in the theorem has exactly (n+ 1)(n +2)/2
points, that is, the number of interpolation conditions matches the dimension of Hi.
The formula

dim IT? = dim IT2_,, + 2(2(s — A+ 1) + 1)

s

can be used repeatedly to verify this fact. Hence, the theorem is a consequence of
Theorem 3.3 with n = s and assumption (3.2) ensures that n<24; + --- + 2/,.

The interpolation points in the theorem are equidistant points located on several
groups of circles (there are o groups, circles in the kth group concentric at a;), the
number of points on the circles is the same for circles in the same group, but may
differ for different groups. The simplest case is n = 2, in which we interpolate 6
points with polynomials in H%. Recall that if 6 points are all located on one circle,
then the interpolation in H% does not have a unique solution.

Example 3.5. n = 2. Since n> J;, there is only one integer solution for A; + 1, = 2,
namely, 0 = 2, 11 = 1, = 1, which gives a poised Lagrange interpolation of 5 points
on one circle and another point not on that circle.

For each fixed n the theorem includes a number of poised Lagrange interpolation
schemes. In fact, every integer solution of Eq. (3.2) corresponds to one poised
Lagrange interpolation. To illustrate the result, we list all cases for n = 6.

Example 3.6. n = 6. Since A; are positive integers, there are 7 solutions to the
equation Ay + --- + 4, = [6/2] + 1 = 4. Each leads to a poised interpolation problem



B. Bojanov, Y. Xu | Journal of Approximation Theory 120 (2003) 267-282 279
according to the theorem. We list them below:

1. 0 =1, Ay = 4: 4 concentric circles with 7 points each;

2. 0 =2,
(a) A1 =3, J, = 1: 3 concentric circles with 9 points each and one additional
point;
(b) 41 =1, Ay = 3: 1 circle with 13 points and 3 concentric circles with 5 points
each;
3.0 =3,

(@) Ay =2, A, =1, A3 = 1: 2 concentric circles with 11 points each, one circle
with 5 points and one additional point;

(b) 41 =1, A, =2, A3 =1: 1 circle with 13 points, 2 concentric circles with 7
points each and one additional point;

(¢) 21 =1, A, =1, 43 =2: 1 circle with 13 points, 1 circle with 9 points and 2
concentric circles with 3 points each;

4. c=4, L1 =1, I, =1, 3=1, lyg=1: 3 circles with 13, 9, 5 points, respec-
tively, and one additional point.

In the above list we only give the number of points on each circle. The circles may
not be concentric unless specifically stated, and it should be understood that points
on each circle are equidistant and all points are distinct. The ‘one additional point’ in
some of the cases corresponds to the degenerate circle of radius 0.

In general, for each n, the number of poised Lagrange interpolation schemes
contained in Theorem 3.3 is equal to the integer solutions of Eq. (3.2), which is the
number of ways that [n/2] + 1 can be written as a sum of positive integers. This
number grows exponentially as » increases.

In the last case of the Example 3.6, we have 4 circles and each has different number
of nodes. It turns out that in this case we do not have to restrict to equidistant points
on the circles, as seen from the next proposition.

Theorem 3.5. Let m be a positive integer and ro, 11, ..., ¥y/2 be distinct positive real
numbers. For each I, let {0;;: 0<j<2(m —2I)} be a set of 2(m —2I) + 1 distinct
points in [0,21). Then there is a unique interpolation polynomial P eH?n such that

P(rycos0;,r1sin01;) = f1;, 0<I<[m/2], 0<j<2(m —2I),
Sor any given numbers {f;;}.

Proof. The number of interpolation conditions matches the dimension of IT?, since

[m/2]
> @m=20)+1) =([m/2] + 1)(2m + 1 = 2[m/2])
1=0

=(m+1)(m+2)/2.
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It suffices to show that f;; = 0 implies that P = 0. By Lemma 2.2 we take P as

P(r,0) = Ao(r?) + > [/ 4;(r?) cos j0 + 1/ B;(+?) sin j0)].
j=1

By the uniqueness of the trigonometric interpolation, the condition P(rg,0;0) =0,
0<,j<2m, shows that 4;(r}) = B;(r3) = 0, so that

B(r,0) = (r* —1})Py(r,0), Piell? ,. (3.3)
Using the same argument to interpolation on the circles of radii r|, 7, ... gives
. [m/2] R
P(r,0) =[] (=)0, 0).
1=0

Since 2[m/2] + 1 >m, O = 0 which shows that P(r,0) =0. O

In fact, this theorem is a consequence of Bezout’s theorem; we give a complete
proof here because the proof is independent and very simple. Indeed, one version of
the classical Bezout’s theorem states (see, for example, [6, p. 59]) that if two algebraic
curves, of order m and n, have more than mn common points, then they have a
common component. Under the assumption of the theorem, the polynomial P that
vanishes on all the interpolation conditions and the polynomial g(x) = x? + x3 — r(z)
(the circle with radius ry) have 2m + 1 common zeros, so that they have a common
component. But ¢ is irreducible, it follows that P(x) = ¢(x)P;(x), which is (3.3).
Using this process repeatedly proves the theorem. Bezout’s theorem has been used in
polynomial interpolation of several variables by many authors; see, for example, the
recent survey [3] and the references therein. Theorem 3.7, however, does not seem to
have been stated before.

One natural question is whether Theorem 3.4 holds true for arbitrary points on the
circles. Despite Theorem 3.5, we believe that this is not the case. The factorization
theorem given in Theorem 1.3 is unlikely to hold for arbitrary points on the circles.
In fact, in the case of one circle with Hermite data, there are examples for n = 3,4 in
[2] showing that the interpolation is not unique for the arbitrary points. Some results
concerning interpolation at arbitrary points on the circles can be found in the recent
papers of Ismail [5].

4. Further remarks

It is well-known that Lagrange interpolation by polynomials of two variables is
poised for almost all set of points. However, checking the poisedness of a given set of
points is often difficult. Our main result provides many sets of points that admit
unique solution for polynomial interpolation in two variables, as demonstrated by
Theorem 3.4 and Example 3.6. The method used in proving the main result can also
be used for other sets of points. First of all, the following theorem is an immediate
consequence of Bezout’s theorem as discussed after the proof of Theorem 3.5.
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Theorem 4.1. Let m be a positive integer and let (x;;,y1;), 0<j<2(m — 21), be points
on [m/2] + 1 conics, Cy,Cy, ..., Cppyoqy in R, and assume that points on C; do not
belong to Cyu---UCi_y for 2<I<[m/2] + 1. Then there is a unique interpolation
polynomial PelIl?, such that

P(xij, 1) = f1j, 0<I<[m/2], 0<j<2(m—2I),

Sfor any given numbers {f;}.

This holds for arbitrary points on the conics. Our main result in Theorems 1.3 and
3.4, however, depends on the use of equidistant points on the circles; it is not clear if
the result can be generalized to arbitrary conics. What is clear, however, is the
following obvious extension of our results: instead of points on the circles, we can
assume that the points are on the ellipses. Indeed, if we use the coordinates (r,0)
defined by

x=arcosf, y=brcosl, r=0, 0<n<2m,
where a and b are non-zero constants, then we can consider analogous of Problem 1
and Problem 2 with normal derivatives

opP oP oP

E:aacosfﬂrbay

Straightforward extension shows that Theorem 2.1 for the Birkhoff interpolation
and Theorem 1.3 of the factorization theorem hold for interpolation points

sinf, (x,y) = (arcosf,brsinf).

(x1,y17) = (aricos ;,br;sinb;), 0,€0,,,

in which circles x*>+4 > —r7 are replaced by the ellipses a 2x? +b72)y* —r7.

Consequently, all results in Section 3 hold with circles replaced by ellipses; that is,
we can consider interpolation on ‘equidistant’ points on several groups of ellipses, in
which the number of points on the same group of ellipses is the same but different
from those in different groups, and the ellipses in the same group are concentric.
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