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Abstract

Polynomial interpolation of two variables based on points that are located on multiple

circles is studied. First, the poisedness of a Birkhoff interpolation on points that are located on

several concentric circles is established. Second, using a factorization method, the poisedness

of a Hermite interpolation based on points located on various circles, not necessarily

concentric, is established. Even in the case of Lagrange interpolation, this gives many new sets

of poised interpolation points.
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1. Introduction

We study polynomial interpolation of two variables for points located on several
circles (not necessarily concentric). This is a continuation of our recent study in [2].
For the background of this study we refer to the introduction section of [2], below we
recall the basic definition and the result there.

Let P2
n denote the space of polynomials P of two variables of total degree n;

Pðx; yÞ ¼
Xn

k¼0

Xk

j¼0
cj;kxjyk�j:
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It is known that dimP2
n ¼ ðn þ 1Þðn þ 2Þ=2: In this paper, we only consider the case

that the number of interpolation conditions matches the dimension of P2
n: If there is

a unique solution to an interpolation problem, we say that the problem is poised.
Throughout this paper, let @=@r denote the normal derivative

@P

@r
¼ @P

@x
cos yþ @P

@y
sin y; ðx; yÞ ¼ ðr cos y; r sin yÞ:

For a positive number r40; denote the circle of radius r centered at the origin by

SðrÞ ¼ fðx; yÞ: x2 þ y2 ¼ rg: Let ½t	 denote the integer part of t: In [2] we studied the
following Hermite interpolation problem

Problem 1. Let n be a positive integer. Let 0or1or2o?orlp1 and let m1; m2;y; ml
be non-negative integers such that

m1 þ m2 þ?þ ml ¼
n

2

h i
þ 1:

Denote by fðxl;j; yl;jÞ: 0pjp2mg distinct points on the circle SðrlÞ; where m ¼
½ðn þ 1Þ=2	 and 1plpl: Characterize the points for which the interpolation problem

@kP

@rk

� �
ðxl;j; yl;jÞ ¼ fj;l;k; 0pkpml � 1; 1plpl; 0pjp2m ð1:1Þ

has a unique solution in P2
n for any given data ffj;l;kg:

A natural choice of points on the circle is the equidistant points. For a real number
a; define

Ya;m ¼ fyaj : yaj ¼ ð2j þ aÞp=ð2m þ 1Þ; j ¼ 0; 1;y; 2mg ð1:2Þ

which is the set of 2m þ 1 equally spaced points on the unit circle. The main result in
[2] shows that the interpolation problem is poised for these points.

Theorem 1.1. The interpolation problem (1.1) based on the equidistant points

ðxl;j ; yl;jÞ ¼ ðrl cos yj; rl sin yjÞ; yjAY0;m

on the circles SðrlÞ; 1plpl; is poised.

The proof exploits the structure of polynomials in two variables and reduces the
problem to a Hermite–Birkhoff interpolation in one variable. There is also examples
in [2] showing that the interpolation problem is not poised for arbitrary points on the
circle.
We will extend the above result in two directions. The first extension comes from a

strengthening of the method in [2], which allows us to include gaps in the directional
derivatives in Problem 1, the so-called Birkhoff interpolation, instead of the
consecutive derivatives. The Birkhoff interpolation problem is usually described
using the notion of incidence matrices, which are matrices whose entries are 0 and 1.
Let X ¼ fr1;y; rlg be a set of distinct real numbers. We assume that
r1or2o?orl: Let E ¼ ðel;kÞ be an incidence matrix with l rows and n columns.
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Let jEj denote the number of 1’s in E; jEj ¼
P

l

P
k el;k: Together E and X define a

Birkhoff interpolation problem in one variable

PðkÞðrlÞ ¼ fl;k; el;k ¼ 1: ð1:3Þ
The Birkhoff interpolation problem is said to be poised if there is a unique
polynomial of degree at most jEj � 1 that satisfies the above interpolation
conditions. With the notion of the incidence matrix, we consider the following
generalization of Problem 1.

Problem 2. Let n be a positive integer. Let 0or1or2o?orl and let E be an

incidence matrix of l rows with jEj ¼ ð½n
2
	 þ 1Þð2½nþ1

2
	 þ 1Þ: Denote by

fðxl;j; yl;jÞ: 0pjp2mg distinct points on the circle SðrlÞ; where m ¼ ½ðn þ 1Þ=2	 and

1plpl: Find proper points and the incidence matrix E for which the interpolation

problem

@kP

@rk

� �
ðxl;j; yl;jÞ ¼ fj;l;k; el;k ¼ 1; 0pjp2m ð1:4Þ

has a unique solution in P2
n for any given data ffj;l;kg:

We will show that for equidistant points on the circles and E being a matrix with
no odd sequence supported from the right (see the definition in Section 2), the above
problem has a unique solution.
The second extension of the result in [2] is in the direction of factorization in the

sense of Bezout’s theorem. In the case of interpolation on one circle (that is, l ¼ 1),
an independent proof of Theorem 1.1 is given later by Hakopian and Ismail [4]. They
proved the following factorization theorem which not only yields the case l ¼ 1 of
Theorem 1.1 but also leads to some other interesting extensions.

Theorem 1.2. Let s;m be positive integers and mpsp2m: If PAP2
s satisfies

@kP

@rk

� �
ðcos yj; sin yjÞ ¼ 0; 0pkps � m; yjAY0;m;

then there is a polynomial QAP2
2m�s�2 such that

Pðx; yÞ ¼ ðx2 þ y2 � 1Þsþ1�m
Qðx; yÞ:

In particular, Q ¼ 0 if s ¼ 2m or s ¼ 2m � 1 and Q is a constant if s ¼ 2m � 2:

For the Lagrange interpolation (no derivatives), this is the well-known Bezout’s
theorem, which holds for arbitrary points on the circle (see Theorem 3.7). The fact
that the interpolation points are equidistant on the circle play essential roles for the
Hermite data. One naturally asks if the factorization theorem holds for the more
general setting of several circles. The proof in [4] does not seem to apply to the
interpolation problem with more than one circles. It turns out, however, that the
method in [2] can be used to prove a factorization theorem for the general setting.
The result is the following theorem:
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Theorem 1.3. Let n; s be positive integers, n ¼ 2m or n ¼ 2m � 1; and ½n=2	pspn: Let

r1; r2;y; rl be distinct positive real numbers, and let t1; t2;y; tl be positive integers

such that

t1 þ t2 þ?þ tl ¼ s � m þ 1:

Denote by fðxl;j; yl;jÞ: 0pjp2mg the equidistant points on the circle SðrlÞ;
ðxl;j ; yl;jÞ ¼ ðrl cos yj; rl sin yjÞ; yjAYa;m; ð1:5Þ

1plpl; for a fixed aA½0; 2Þ: Assume that PAP2
s satisfies

@kP

@rk

� �
ðxl;j; yl;jÞ ¼ 0; 0pkptl � 1; 1plpl; 0pjp2m:

Then there is a polynomial QAP2
2m�s�2 such that

Pðx; yÞ ¼
Yl
l¼1

ðx2 þ y2 � r2l Þ
tl Qðx; yÞ:

In particular, Q ¼ 0 if s ¼ n:

This theorem can be used to prove a number of results on the poisedness of
polynomial interpolation. One important feature is that the factorization process can
be used repeatedly to obtain a total factorization of a polynomial. This gives, for
example, the poisedness of the Hermite interpolation on equidistant points on
several groups of circles, in which the number of points on the same group of circles
is the same but different from those in different groups; moreover, the circles from
different groups no longer have to be concentric. Even in the case of the Lagrange
interpolation, many new sets of poised interpolation points can be obtained this way
(see Theorem 3.4 and Example 3.6). For the Lagrange interpolation on one circle,
the factorization theorem holds for arbitrary points on the circle by the classical
Bezout theorem (see Theorem 3.7). For several circles, however, the factorization is
not a simple consequence of Bezout’s theorem, the result depends on the fact that the
interpolation points are equidistant on the circles.
The paper is organized as follows. The result on the Birkhoff interpolation is

proved in Section 2. The factorization theorem and its consequences are presented in
Section 3.

2. Birkhoff interpolation

For the Birkhoff interpolation (1.3) we recall the following notion. A sequence in
an incidence matrix is a sequence of consecutive 1’s in a row of E; say el;k ¼ 1 for

k ¼ i þ 1;y; i þ j; el;i ¼ 0 and el;iþjþ1 ¼ 0; it is an odd sequence if j is odd. A

supported sequence is a sequence such that there are non-zero elements of E in both
its upper and lower left sides, that is, there are ei1;j1 ¼ 1 and ei2;j2 ¼ 1 with i1ol; i24l;

j1pi and j2pi; a sequence is supported from the right if there are non-zero elements of
E below and to the left of the beginning of the sequence (it may be more proper to

B. Bojanov, Y. Xu / Journal of Approximation Theory 120 (2003) 267–282270



say supported from upper side, but we have in mind interpolation points on the real
line). An incidence matrix E of l� n is said to satisfy the Pólya condition if

Xj

k¼1

Xl
l¼1

el;kXj þ 1; j ¼ 0; 1;y; n:

By the Atkinson–Sharma theorem [1], a Birkhoff interpolation is poised if E has no
odd supported sequence and E satisfies the Pólya condition. Our main result in this
section is the following.

Theorem 2.1. Let E be an incidence matrix that satisfies the conditions in Problem 2
and has no odd sequence supported from the right. Assume that E satisfies the Pólya

condition. Then the interpolation problem (1.4) based on the equidistant points

ðxl;j ; yl;jÞ ¼ ðrl cos yl;j; rl sin yl;jÞ; yl;jAY0;m

on the circles SðrlÞ; 1plpl; is poised.

For example, there is a unique polynomial of degree 2 that satisfies the
interpolation condition

P cos
2jp
3
; sin

2jp
3

� �
¼ f0;j;

d2P

dr2
cos

2jp
3
; sin

2jp
3

� �
¼ f1;j ; j ¼ 0; 1; 2

for any given data ff0;j ; f1;jg: Here E contains only one row, it has one odd sequence

(of 1 element) which is clearly not supported from the right.
If the interpolation condition is given on consecutive directional derivatives (that

is, the Hermite interpolation), then E clearly satisfies the Pólya condition. In that
case, Theorem 2.1 reduces to Theorem 1.1.

Remark 2.1. In [2], Theorem 1.1 was stated with yAYal ;m; that is, equidistant points
on different circles can differ by an angle. A careful examination of the proof shows,
however, that this is not the case. We thank Hakop Hakopian for pointing this out
to us.

For the proof we first recall some elementary lemmas in [2]. For our purpose, it is
often more convenient to use the polar coordinates

x ¼ r cos y and y ¼ r sin y; rX0; 0pyp2p:

For a polynomial PAP2
n; we shall write P̃ðr; yÞ ¼ Pðr cos y; r sin yÞ: The following

lemma gives the expression of a polynomial in polar coordinates [2].

Lemma 2.2. For nX0; in polar coordinates, every polynomial PnAP2
n can be written as

P̃nðr; yÞ ¼ A0ðr2Þ þ
Xn

j¼1
½rjAjðr2Þ cos jyþ rjBjðr2Þ sin jy	;

where AjðtÞ and BjðtÞ are polynomials of degree ½ðn � jÞ=2	:
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More importantly, on the equidistant points of the circle of radius r; the
expression can be simplified [2]. Let Ya;m be defined as in (1.2).

Lemma 2.3. For yAYa;m and PnAP2
n with n ¼ 2m or n ¼ 2m � 1;

P̃nðr; yÞ ¼A0ðr2Þ þ
Xm

j¼1
½ðrjAjðr2Þ þ r2m�jþ1A2m�jþ1ðr2ÞÞ cos jy

þ ðrjBjðr2Þ � r2m�jþ1B2m�jþ1ðr2ÞÞ sin jy	

and we assume that A2m ¼ B2m ¼ 0 if n ¼ 2m � 1:

In order to show that the Birkhoff interpolation problem (1.4) is poised at the

equidistant points fðxl;j; yl;jÞg; we need to show that if PAP2
n and

dkP̃

drk
ðrl ; yÞ ¼ 0; el;k ¼ 1; yAY0;m; ð2:1Þ

then P is a zero polynomial. Using the expression in Lemma 2.3 for P̃; the
interpolation conditions imply the following.

Lemma 2.4. Let Pn be as in Lemma 2.3, n ¼ 2m or n ¼ 2m � 1: If P̃n satisfies (2.1),
then for 0pjpm;

dk

drk
½rjAjðr2Þ þ r2m�jþ1A2m�jþ1ðr2Þ	r¼rl

¼ 0; el;k ¼ 1;

dk

drk
½rjBjðr2Þ � r2m�jþ1B2m�jþ1ðr2Þ	r¼rl

¼ 0; el;k ¼ 1;

where we assume Aj ¼ Bj ¼ 0 for j4n and B0 ¼ 0:

Proof. Let n ¼ 2m: The expression of P in Lemma 2.3 shows that (2.1) can be
written as

dk

drk
A0ðr2Þ

����
r¼rl

þ
Xm

j¼1

dk

drk
ðrjAjðr2Þ þ r2m�jþ1A2m�jþ1ðr2ÞÞjr¼rl

cos jy
	

þ dk

drk
ðrjBjðr2Þ � r2m�jþ1B2m�jþ1ðr2ÞÞjr¼rl

sin jy


¼ 0

for yAYa;m and el;k ¼ 1: As a trigonometric polynomial of degree m that takes the

value zero at 2m þ 1 distinct points in ½0; 2pÞ; the uniqueness of the trigonometric
interpolation [7, vol. 2, p. 1] shows that the coefficients of cos jy and sin jy are zero,
which gives the stated equations. The case n ¼ 2m � 1 is similar. &

To prove Theorem 2.1 it is sufficient to show that the two systems in the above
lemma implies that Aj � 0 and Bj � 0 for 0pjpm: It turns out that this can be

derived from a special Birkhoff interpolation problem of one variable. We first prove
the following result.
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Lemma 2.5. Let m1;y;mN be distinct non-negative integer numbers and let E be an

incidence matrix with l rows and jEj ¼ N: Assume that E has no odd sequences supported

from the right, and E satisfies the Pólya condition. If PA span ftm1 ;y; tmNg and

PðkÞðrlÞ ¼ 0; el;k ¼ 1

for 0or1o?orl; then P � 0:

Proof. Let P satisfy the conditions of the lemma. Let M ¼ maxfm1;y;mNg: Then
P has exact degree M and P has M þ 1� N zero coefficients. It follows that

PðkÞð0Þ ¼ 0; kAf0; 1;y;MgWfm1;y;mNg:

Let E0 ¼ fe0;kg be the incidence matrix of one row that describe the above Birkhoff

interpolation, that is, E is a row vector such that e0;k ¼ 1 if

kAf0; 1;y;MgWfm1;y;mNg and e0;k ¼ 0 otherwise. Let E0,E be the incidence

matrix that has E0 as the first row, followed by the rows of E in its original order.
Clearly jE0,Ej ¼ M þ 1: The incidence matrix E0,E describes a Birkhoff
interpolation problem on lþ 1 points, 0; r1;y; rl; and P satisfies the condition that

PðkÞðrlÞ ¼ 0; el;k ¼ 1; el;kAE0,E; PAP1
M :

By the assumption on E; this new incidence matrix has no odd supported sequence
and it clearly satisfies the Pólya condition. Consequently, it is poised and we
conclude that P � 0: &

For the proof of our theorem, we need the following corollary of the above lemma.

Lemma 2.6. Let E be an incidence matrix that has no odd sequence supported from the

right. Assume that E satisfies the Pólya condition and jEj ¼ s þ 1: Let pðtÞ be a

polynomial of degree s � j; qðtÞ be a polynomial of degree j � 1 and qðtÞ ¼ 0 if j ¼ 0: If

dk

drk
½rjpðr2Þ þ r2m�jþ1qðr2Þ	r¼rl

¼ 0; el;k ¼ 1;

then p � 0 and q � 0:

Proof. We assume that the polynomials p and q take the following form:

pðtÞ ¼
Xd

i¼0
ait

i and qðtÞ ¼
Xs�m�d�1

i¼0
bit

i:

Set

jðrÞ :¼ rjpðr2Þ þ r2m�jþ1qðr2Þ:

Then ai is the coefficient of r2iþj and bi is the coefficient of r2m�jþ1þ2i of the
polynomial j: Since 2i þ j and 2m � j þ 1þ 2i are integers of different parity, it
follows that the number of non-zero coefficients in the polynomial j is equal to s: So
that we can apply Lemma 2.5 with N ¼ s � 1 to conclude that j ¼ 0; which implies
that p � 0 and q � 0: &
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Proof of Theorem 2.1. If n ¼ 2m; then Al in Lemma 2.4 is of degree m � ½ðl þ 1Þ=2	
and A2m�lþ1 is of degree ½ðl � 1Þ=2	: Hence, Lemma 2.6 can be used with l ¼ 2j or
l ¼ 2j � 1 and s ¼ m to prove that the equations in Lemma 2.4 imply Aj ¼ 0 and

A2m�jþ1 ¼ 0 for 0pjpm; and similarly Bj ¼ 0 and B2m�jþ1¼0 for 0pjpm:

Consequently, we conclude that P � 0 and the theorem is proved. The case n ¼
2m � 1 is proved similarly. &

3. Factorization theorem and interpolation

In this section, we prove the factorization in Theorem 1.3 and use it to derive a
number of results for the polynomial interpolation. The proof of the factorization is
based on the following lemma, another corollary of Lemma 2.5, which we stated here
more as a way of fixing the notation.

Lemma 3.1. Let s; d; j;m be non-negative integers such that jp2m þ 1; sXm þ 1þ d:
Let t1;y; tl be positive integers satisfying t1 þ?þ tl ¼ s � m þ 1: Let pðtÞ be a

polynomial of degree d, qðtÞ be a polynomial of degree s � m � d � 1: If p and q satisfy

dk

drk
½rjpðr2Þ þ r2m�jþ1qðr2Þ	r¼rl

¼ 0; 0pkptl � 1; 1plpl;

then p � 0 and q � 0:

Proof. We define the polynomial j as in Lemma 2.6. Then j is of degree M ¼
maxfj þ 2d; 2s � 2d � j � 1g; and the number of non-zero coefficients in the
polynomial j is equal to s � m þ 1: The interpolation conditions are described by
the l� M incidence matrix E ¼ ðel;kÞ defined by

el;k ¼ 1; 1plpl; 0pkptl � 1:

Then jEj ¼ s � m þ 1 and E clearly satisfies the Pólya condition and has no
supported sequences. We can apply Lemma 2.5 with N ¼ s � m þ 1 to conclude that
j ¼ 0; which implies that p � 0 and q � 0: &

The lemma can be proved directly, without relying on Lemma 2.5 since in this case
the matrix E is Hermitian. The condition jEj ¼ s � m þ 1 means that jðrÞ has s �
m þ 1 non-zero coefficients and then, by Descartes’ rule of signs, j has less than
s � m þ 1 positive zeros (counting multiplicities) or is identically zero.
We are ready to prove the factorization theorem:

Proof of Theorem 1.3. Up to a rotation, we can assume that a ¼ 0 in the proof. By
Lemma 2.2, we can take P in the form

P̃ðr; yÞ ¼ A0ðr2Þ þ
Xs

j¼1
½rjAjðr2Þ cos jyþ rjBjðr2Þ sin jy	;
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where AjðtÞ and BjðtÞ are polynomials of degree ½ðs � jÞ=2	: By Lemma 2.3, we have
that for yAY0;m;

P̃nðr; yÞ ¼A0ðr2Þ þ
Xm

j¼1
½rjAjðr2Þ cos jyþ rjBjðr2Þ sin jy	

þ
Xm

j¼2mþ1�s

½r2m�jþ1A2m�jþ1ðr2Þ cos jy� r2m�jþ1

� B2m�jþ1ðr2Þ sin jy	:

Using Lemma 2.4, the interpolation conditions implies the following two cases.
Case 1: 0pjp2m � s:

dk

drk
½rjAjðr2Þ	r¼rl

¼ 0;
dk

drk
½rjBjðr2Þ	r¼rl

¼ 0; 0pkptl � 1; 1plpl:

Since the derivatives are taking consecutively, this shows that A
ðkÞ
j ðr2l Þ ¼ 0 and

B
ðkÞ
j ðr2l Þ ¼ 0 for 0pkptl � 1 and 1plpl: Consequently, we conclude that

Ajðr2Þ ¼
Yl
l¼1

ðr2 � r2l Þ
tl An

j ðr2Þ; Bjðr2Þ ¼
Yl
l¼1

ðr2 � r2l Þ
tl Bn

j ðr2Þ;

where An
j and Bn

j are polynomials of degree ½ðs � jÞ=2	 � ðs � m þ 1Þ and we define

An
j ¼ Bn

j ¼ 0 if ½ðs � jÞ=2	 � ðs � m þ 1Þo0:

Case 2: 2m � s þ 1pjpm:

dk

drk
½rjAjðr2Þ þ r2m�jþ1A2m�jþ1ðr2Þ	r¼rl

¼ 0; 0pkptl � 1; 1plpl;

dk

drk
½rjBjðr2Þ � r2m�jþ1B2m�jþ1ðr2Þ	r¼rl

¼ 0; 0pkptl � 1; 1plpl:

Using the lemmas with d ¼ ½ðs � jÞ=2	; we conclude that Aj ¼ Bj ¼ 0 and A2m�jþ1 ¼
B2m�jþ1 ¼ 0:

Together, the two cases show that

P̃ðr; yÞ ¼
Yl
l¼1

ðr2 � r2l Þ
tl An

0ðr2Þ þ
X2m�s

j¼1
ðrjAn

j ðr2Þ cos jyþ rjBn

j ðr2Þ sin jyÞ
" #

;

which completes the proof. &

Let X ¼ fx1;y; xsg be a subset of R2: Let LX be a linear map, LX :P2/RN ; that
describes an Hermite interpolation problem LX P ¼ LX f for a given function f : For
example, for the Lagrange interpolation, LX P ¼ fPðx1Þ;y;PðxNÞg: Each compo-
nent of LX P is either P or one of its consecutive directional derivative (or a sum of
consecutive derivatives of P) evaluated at some point in X ; where by consecutive
derivatives we mean that at least one directional derivative is included for each
consecutive degree involved (Hermite interpolation). We say that ðX ;LX Þ is regular
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for the Hermite interpolation in P2
n; if N ¼ dim P2

n and there is a unique polynomial

PAP2
n such that LX P ¼ LX f for any given function f :

An immediate consequence of the previous theorem is the following result:

Theorem 3.2. Let m; s be positive integers and mpsp2m: Let r1; r2;y; rl be distinct

positive real numbers, and t1; t2;y; tl be positive integers such that

t1 þ t2 þ?þ tl ¼ s � m þ 1:

Denote by fðxl;j; yl;jÞ: 0pjp2mg the equidistant points on the circle SðrlÞ; 1plpl; as

in (1.5). Let XCR2W
Sl

l¼1 SðrlÞ; and ðX ;LX Þ be regular for a Hermite interpolation

in P2
2m�s�2: Then for any given function f ; there is a unique interpolation polynomial

PAP2
2m�s such that LX P ¼ LX f and

@kP

@rk

� �
ðxl;j; yl;jÞ ¼

@kf

@rk

� �
ðxl;j; yl;jÞ;

0pkptl � 1; 1plpl; 0pjp2m:

Proof. Again we only need to prove that f ðxÞ ¼ 0 implies PðxÞ ¼ 0: By the

factorization theorem P̃ðr; yÞ ¼
Ql

l¼1ðr2 � r2l Þ
tl Q̃ðr; yÞ; where Q is a polynomial in

P2
2m�s�2: Since LX assigns the Hermite interpolation conditions, which means

consecutive derivatives, it follows that Q satisfies LX Q ¼ 0: Hence, since ðX ;LX Þ is
regular for the Hermite interpolation in P2

2m�s�2; it follows that Q � 0; hence

P � 0: &

In other words, the theorem states that we can combine two interpolation
processes to make up a new interpolation process. For example, we can take X and
LX to be the same type of Hermite interpolation as in our Theorem 1.1, which leads
to a Hermite interpolation on two groups of circles, on one group of circles we
interpolate at 2m þ 1 points, on the other we interpolate at 2m � 2½ðs þ 1Þ=2	 þ 1
points. In particular, we can take ðX ;LX Þ as the Lagrange interpolation.
Even more important, however, is the fact that we can iterate several times of the

above theorem to get an interpolation scheme that consists of several groups of
circles, such that the number of interpolation points on different groups of circles are
all different; furthermore, the circles from different group need not to be concentric.
Denote by

Sða; rÞ ¼ fðx1; x2Þ : ðx � a1Þ2 þ ðx � a2Þ2 ¼ r2g;

a ¼ ða1; a2ÞAR2; rX0;

the circle of radius r with center at a: Then we can consider interpolation based on
points that are equally spaced on the circles Sðak; rl;kÞ and the number of points on

the circles Sðak; r1;kÞ;Sðak; r2;kÞ;y are the same but different from the number of

points on Sðak0 ; r1;k0 Þ;Sðak0 ; r2;k0 Þ;y for kak0: Perhaps the most interesting case is

the Lagrange interpolation, that is, no derivatives involved, which we state below.
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Theorem 3.3. Let s;s; l1; l2;y; ls be positive integers such that s4l14l24?4ls
and define

sk ¼ s � 2l1 �?� 2lk�1 � lk þ 1:

For 1pkps; let ak ¼ ða1;k; a2;kÞAR2 and rl;k be distinct non-negative real numbers,

1plplk: For a1;y; asA½0; 2Þ; let

ðxj;l;k; yj;l;kÞ ¼ ða1;k þ rl;k cos yj; a2;k þ rl;k sin yjÞ; yjAYak ;sk
; ð3:1Þ

where 0pjp2sk; denote the equidistant points on the circle Sðak; rl;kÞ and assume that

all points are distinct. If PAP2
s satisfies

Pðxj;l;k; yj;l;kÞ ¼ 0; 0pjp2sk; 1plplk; 1pkps;

then there is a polynomial QAP2
s�2l1�?�2ls such that

Pðx; yÞ ¼
Ys
k¼1

Ylk

l¼1
ððx � a1;kÞ2 þ ðy � a2;kÞ2 � r2l;kÞQðx; yÞ:

In particular, if so2l1 þ?þ 2ls; then Q ¼ 0:

Proof. Applying an affine transformation, it is easy to see that the previous theorem
holds if the circles SðrlÞ are replaced by Sða; rlÞ for any fixed aAR: Since
Pðxj;l;1; yj;l;1Þ ¼ 0; we can apply Theorem 1.3 with m ¼ s � l1 þ 1 and the circles

center at a1 to conclude that there is a polynomial Q1AP2
s�2l1 such that

Pðx; yÞ ¼
Yl1
l¼1

ððx � a1;1Þ2 þ ðy � a2;1Þ2 � r2l;1ÞQ1ðx; yÞ:

Since rl;k are distinct and all points ðxj;l;k; yj;l;kÞ are distinct, we have Q1ðxj;l;2; yj;l;2Þ ¼
0: Hence the previous theorem with m ¼ s � 2l1 � l2 � 1 and the circles center at a2
implies that there is a polynomial Q2AP2

s�2l1�2l2 such that

Pðx; yÞ ¼
Yl1
l¼1

ððx � a1;1Þ2 þ ðy � a2;1Þ2 � r2l;1Þ

�
Yl2
l¼1

ððx � a1;2Þ2 þ ðy � a2;2Þ2 � r2l;2ÞQ2ðx; yÞ:

Continuing this process for k ¼ 3; 4;y; s completes the proof. &

Remark 3.1. The equidistant points for circles in the same group have the same
angles; that is, ak in Yak ;sk

is a constant for the circles Sðak; r1;kÞ;y;Sðak; rlk ;kÞ:
However, the equidistant points for circles in different groups can differ by a
constant; that is, ak may not be equal to al for kal:

We remark that rl;k are distinct non-negative numbers, so that at most one rl;k

can be zero. If r ¼ 0; the corresponding circle Sða; rÞ is just the center a: Also, the
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centers ak of the circles are not necessarily distinct. One interesting case is when all
ak ¼ 0; that is, all circles are concentric at the origin.
An immediate consequence of the above theorem is the following result on the

Lagrange interpolation.

Theorem 3.4. Let n; s; l1; l2;y; ls be positive integers, such that n4li and

l1 þ?þ ls ¼ ½n=2	 þ 1: ð3:2Þ

Let ak ¼ ða1;k; a2;kÞ and let rl;k be distinct non-negative real numbers, 1plplk;
1pkps: Define

n1 ¼ n � l1 þ 1; and nk ¼ n � 2l1 �?� 2lk�1 � lk þ 1; kX2:

Let ðxj;l;k; yj;l;kÞ; 0pjp2nk; denote the equidistant points on the circle Sðak; rl;kÞ as in

(3.1) and assume that all points are distinct. Then for any given data ffj;l;kg; there is a

unique polynomial PAP2
n that satisfies

Pðxj;l;k; yj;l;kÞ ¼ fj;l;k; 0pjp2nk; 1plplk; 1pkps:

The Lagrange interpolation described in the theorem has exactly ðn þ 1Þðn þ 2Þ=2
points, that is, the number of interpolation conditions matches the dimension of P2

n:
The formula

dimP2
s ¼ dimP2

s�2l þ lð2ðs � lþ 1Þ þ 1Þ

can be used repeatedly to verify this fact. Hence, the theorem is a consequence of
Theorem 3.3 with n ¼ s and assumption (3.2) ensures that no2l1 þ?þ 2ls:
The interpolation points in the theorem are equidistant points located on several

groups of circles (there are s groups, circles in the kth group concentric at ak), the
number of points on the circles is the same for circles in the same group, but may
differ for different groups. The simplest case is n ¼ 2; in which we interpolate 6

points with polynomials in P2
2: Recall that if 6 points are all located on one circle,

then the interpolation in P2
2 does not have a unique solution.

Example 3.5. n ¼ 2: Since n4li; there is only one integer solution for l1 þ l2 ¼ 2;
namely, s ¼ 2; l1 ¼ l2 ¼ 1; which gives a poised Lagrange interpolation of 5 points
on one circle and another point not on that circle.

For each fixed n the theorem includes a number of poised Lagrange interpolation
schemes. In fact, every integer solution of Eq. (3.2) corresponds to one poised
Lagrange interpolation. To illustrate the result, we list all cases for n ¼ 6:

Example 3.6. n ¼ 6: Since li are positive integers, there are 7 solutions to the
equation l1 þ?þ ls ¼ ½6=2	 þ 1 ¼ 4: Each leads to a poised interpolation problem
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according to the theorem. We list them below:

1. s ¼ 1; l1 ¼ 4: 4 concentric circles with 7 points each;
2. s ¼ 2;

(a) l1 ¼ 3; l2 ¼ 1: 3 concentric circles with 9 points each and one additional
point;

(b) l1 ¼ 1; l2 ¼ 3: 1 circle with 13 points and 3 concentric circles with 5 points
each;

3. s ¼ 3;
(a) l1 ¼ 2; l2 ¼ 1; l3 ¼ 1: 2 concentric circles with 11 points each, one circle

with 5 points and one additional point;
(b) l1 ¼ 1; l2 ¼ 2; l3 ¼ 1: 1 circle with 13 points, 2 concentric circles with 7

points each and one additional point;
(c) l1 ¼ 1; l2 ¼ 1; l3 ¼ 2: 1 circle with 13 points, 1 circle with 9 points and 2

concentric circles with 3 points each;
4. s ¼ 4; l1 ¼ 1; l2 ¼ 1; l3 ¼ 1; l4 ¼ 1: 3 circles with 13, 9, 5 points, respec-

tively, and one additional point.

In the above list we only give the number of points on each circle. The circles may
not be concentric unless specifically stated, and it should be understood that points
on each circle are equidistant and all points are distinct. The ‘one additional point’ in
some of the cases corresponds to the degenerate circle of radius 0.
In general, for each n; the number of poised Lagrange interpolation schemes

contained in Theorem 3.3 is equal to the integer solutions of Eq. (3.2), which is the
number of ways that ½n=2	 þ 1 can be written as a sum of positive integers. This
number grows exponentially as n increases.
In the last case of the Example 3.6, we have 4 circles and each has different number

of nodes. It turns out that in this case we do not have to restrict to equidistant points
on the circles, as seen from the next proposition.

Theorem 3.5. Let m be a positive integer and r0; r1;y; r½m=2	 be distinct positive real

numbers. For each l; let fyl;j: 0pjp2ðm � 2lÞg be a set of 2ðm � 2lÞ þ 1 distinct

points in ½0; 2pÞ: Then there is a unique interpolation polynomial PAP2
m such that

Pðrl cos yl;j ; rl sin yl;jÞ ¼ fl;j ; 0plp½m=2	; 0pjp2ðm � 2lÞ;

for any given numbers ffl;jg:

Proof. The number of interpolation conditions matches the dimension of P2
m; since

X½m=2	

l¼0
ð2ðm � 2lÞ þ 1Þ ¼ ð½m=2	 þ 1Þð2m þ 1� 2½m=2	Þ

¼ ðm þ 1Þðm þ 2Þ=2:
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It suffices to show that fl;j ¼ 0 implies that P � 0: By Lemma 2.2 we take P as

P̃ðr; yÞ ¼ A0ðr2Þ þ
Xm

j¼1
½rjAjðr2Þ cos jyþ rjBjðr2Þ sin jy	:

By the uniqueness of the trigonometric interpolation, the condition Pðr0; yj;0Þ ¼ 0;

0pjp2m; shows that Ajðr20Þ ¼ Bjðr20Þ ¼ 0; so that

P̃ðr; yÞ ¼ ðr2 � r20ÞP̃1ðr; yÞ; P1AP2
m�2: ð3:3Þ

Using the same argument to interpolation on the circles of radii r1; r2;y gives

P̃ðr; yÞ ¼
Y½m=2	

l¼0
ðr2 � r2l ÞQ̃ðr; yÞ:

Since 2½m=2	 þ 14m; Q̃ ¼ 0 which shows that P̃ðr; yÞ ¼ 0: &

In fact, this theorem is a consequence of Bezout’s theorem; we give a complete
proof here because the proof is independent and very simple. Indeed, one version of
the classical Bezout’s theorem states (see, for example, [6, p. 59]) that if two algebraic
curves, of order m and n; have more than mn common points, then they have a
common component. Under the assumption of the theorem, the polynomial P that

vanishes on all the interpolation conditions and the polynomial qðxÞ ¼ x2
1 þ x2

2 � r20
(the circle with radius r0) have 2m þ 1 common zeros, so that they have a common
component. But q is irreducible, it follows that PðxÞ ¼ qðxÞP1ðxÞ; which is (3.3).
Using this process repeatedly proves the theorem. Bezout’s theorem has been used in
polynomial interpolation of several variables by many authors; see, for example, the
recent survey [3] and the references therein. Theorem 3.7, however, does not seem to
have been stated before.
One natural question is whether Theorem 3.4 holds true for arbitrary points on the

circles. Despite Theorem 3.5, we believe that this is not the case. The factorization
theorem given in Theorem 1.3 is unlikely to hold for arbitrary points on the circles.
In fact, in the case of one circle with Hermite data, there are examples for n ¼ 3; 4 in
[2] showing that the interpolation is not unique for the arbitrary points. Some results
concerning interpolation at arbitrary points on the circles can be found in the recent
papers of Ismail [5].

4. Further remarks

It is well-known that Lagrange interpolation by polynomials of two variables is
poised for almost all set of points. However, checking the poisedness of a given set of
points is often difficult. Our main result provides many sets of points that admit
unique solution for polynomial interpolation in two variables, as demonstrated by
Theorem 3.4 and Example 3.6. The method used in proving the main result can also
be used for other sets of points. First of all, the following theorem is an immediate
consequence of Bezout’s theorem as discussed after the proof of Theorem 3.5.
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Theorem 4.1. Let m be a positive integer and let ðxl;j; yl;jÞ; 0pjp2ðm � 2lÞ; be points

on ½m=2	 þ 1 conics, C1;C2;y;C½m=2	þ1 in R2; and assume that points on Cl do not

belong to C1,?,Cl�1 for 2plp½m=2	 þ 1: Then there is a unique interpolation

polynomial PAP2
m such that

Pðxl;j; yl;jÞ ¼ fl;j ; 0plp½m=2	; 0pjp2ðm � 2lÞ;
for any given numbers ffl;jg:

This holds for arbitrary points on the conics. Our main result in Theorems 1.3 and
3.4, however, depends on the use of equidistant points on the circles; it is not clear if
the result can be generalized to arbitrary conics. What is clear, however, is the
following obvious extension of our results: instead of points on the circles, we can
assume that the points are on the ellipses. Indeed, if we use the coordinates ðr; yÞ
defined by

x ¼ ar cos y; y ¼ br cos y; rX0; 0ppp2p;

where a and b are non-zero constants, then we can consider analogous of Problem 1
and Problem 2 with normal derivatives

@P

@r
¼ a

@P

@x
cos yþ b

@P

@y
sin y; ðx; yÞ ¼ ðar cos y; br sin yÞ:

Straightforward extension shows that Theorem 2.1 for the Birkhoff interpolation
and Theorem 1.3 of the factorization theorem hold for interpolation points

ðxl;j ; yl;jÞ ¼ ða rl cos yj; b rl sin yjÞ; yjAY0;m;

in which circles x2 þ y2 � r2l are replaced by the ellipses a�2x2 þ b�2y2 � r2l :

Consequently, all results in Section 3 hold with circles replaced by ellipses; that is,
we can consider interpolation on ‘equidistant’ points on several groups of ellipses, in
which the number of points on the same group of ellipses is the same but different
from those in different groups, and the ellipses in the same group are concentric.
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